
MDF-Specification

Nico Schmoigl

MDF-Specification
by Nico Schmoigl

Published $Id: MDF-Specification.sgml,v 1.1 2001/04/20 17:28:48 nico Exp $

A binary orientated network-wide protocol for submitting information about bad memory modules.

Table of Contents
1. Introduction ..1

1.1. A MDF command...1
1.2. A sequence of MDF commands..1

2. The MDF command reference..3

2.1. MDFCMD_VERSION - Version definition..3
2.1.1. Description...3

2.2. MDFCMD_END - End of protocol..3
2.2.1. Description...4

2.3. MDFCMD_MODULENAME - Start of a new module..4
2.3.1. Description...4

2.4. MDFCMD_MODULESIZE - Setting the size of a module...4
2.4.1. Description...4

2.5. MDFCMD_PATTERN - Submission of a BadMEM pattern..5
2.5.1. Description...5
2.5.2. The V2-with-ubound pattern standard..5

3. A recommended MDF sequence...7

i

List of Tables
1-1. mdf_cmd structure..1
2-1. valid constants for the command field of an MDF command..3
2-2. Pattern type definition..5
2-3. structure of the V2-with-ubound pattern..5

i

Chapter 1. Introduction
The MDF (MemoryDataFormat) procotol is a block-orientated, abstract protocol, normally (but not
necessarily) restricted to files and to memory areas. The block size depends on the amount of data
specified with the given command. A sequence of MDF commands (see later) describes one (or more)
memory modules (and its bad areas) uniquely.

1.1. A MDF command
A MDF command consists at least of the following bytes:

Table 1-1. mdf_cmd structure

offset type name description

0x00 unsigned 8-bit command Describes the type of
action which should be
taken when reading this
command; see reference
below for more details
which actions can be
triggered.

0x01 unsigned 16-bit network
order

sub-command A (not-yet-used) sub
command for specifing
the exact action which
should be taken

0x03 unsigned 8-bit length Stores how many bytes
are in the data area which
will follow this MDF
command

Summarized, you can see that this structure has a total length of four bytes. Please note that after these
bytes, there might be additional data which length is stated in thelengthfield. Note that therefore the
maximal amount of bytes in the data area is always restricted to 255 bytes; alengthof zero means that no
additional data is available.

1.2. A sequence of MDF commands
A sequence of MDF commands is one (or normally more) MDF commands concatinated in a specific,
user-defined order. Please note that between the given commands there may be additional data as already
stated during the definition of the command.

Therefore a valid sequence may look like this:

| cmd1 | subcmd1 | len1 | ***** data1 ***** | cmd2 | subcmd2 | len2 | cmd3 | sub-
cmd3 | len3 | ** data3 ** |

1

Chapter 1. Introduction

But please note that the length of the data1-field is always the same as len1 (the same on data3 and len3,
too, for sure!)

2

Chapter 2. The MDF command reference
Every bit combination of thecommandfield in a MDF command symbolizes a certain action to be
performed. Here are their meanings:

Table 2-1. valid constants for the command field of an MDF command

content in the command field abbrevation description

0x01 MDFCMD_VERSION Defines the current version of this
protocol

0xff MDFCMD_END The MDF protocol ends here; all
data after this mark should not be
interpretated as MDF commands

0x10 MDFCMD_MODULENAME Definition of module identification
name

0x11 MDFCMD_SIZE Definition of module size

0x20 MDFCMD_PATTERN Submission of a pattern line for
bad spots in a memory module

All other bytes not specified above are still unused; their meaning is not defined here. Therefore they
should not be used in practice.

The commands above will now be discussed:

2.1. MDFCMD_VERSION - Version definition
command: MDFCMD_VERSION

sub-command: see description

length: always 0

data: nothing

2.1.1. Description
Defines the protocol version. The sub-command holds the version number. As this is the first release,
sub-command should be always 1.

Further releases will always be compatible to earlier versions. Therefore, unknown commands should be
skipped without taking any action.

Important:Any MDF data should begin with this command to make sure that the interpreter may use the
correct command set

3

Chapter 2. The MDF command reference

2.2. MDFCMD_END - End of protocol
command: MDFCMD_END

sub-command: does not matter

length: always 0

data: nothing

2.2.1. Description
This tells the interpreter that beyond this mark, no new command should be looked at.

This features enables the MDF specification to be included into other (network) protocols.

2.3. MDFCMD_MODULENAME - Start of a new module
command: MDFCMD_MODULENAME

sub-command: always 0

length: see description

data: see description

2.3.1. Description
MDFCMD_MODULENAME starts a new module definition. There is no "MODULE END" command;
the next MDFCMD_MODULENAME starts a new module, closing the old one.

In the fielddata, you must specify an unique (globally, if possible) qualifier. The length of this qualifier
is stored in thelengthfield. The qualifier can consist of any byte combination. Please do not use the 0x0
byte as this may be confusing. It is recommended to use only tty-characters.

2.4. MDFCMD_MODULESIZE - Setting the size of a
module

requires: a MDFCMD_MODULENAME must be prior this command

command: MDFCMD_MODULESIZE

sub-command: always 0

length: see description (recommendation: 4)

data: see description

4

Chapter 2. The MDF command reference

2.4.1. Description
Defines the maximal size of the modules, defined by latest MDFCMD_MODULENAME command. If
specified more than once for a module, thelast MDFCMD_MODULESIZE is the valid one.

The actual module size is store in thedatafield. The fieldlengthstores its length. The data is in network
order. The unit of the size is in (pure) bytes.

It is recommended to use an unsigned 32-bit value in network order for submission.

2.5. MDFCMD_PATTERN - Submission of a BadMEM
pattern

command: MDFCMD_PATTERN

sub-command: depends on type

length: depends on type

data: see description

2.5.1. Description
There are several types of patterns:

Table 2-2. Pattern type definition

sub-command type comment

0x0000 ANCIENT Please not use this pattern type - it
is too old

0x0001 unused

0x0002 V2 Due to the lack of upper bounds,
please do not use the standard
V2-type

0x0003 V2-with-ubound This is the preferred pattern type

2.5.2. The V2-with-ubound pattern standard
A V2-with-ubound structure consists of four fields:

Table 2-3. structure of the V2-with-ubound pattern

offset type name description

0x00 unsigned 32-bit network
order

lbound contains the lower bound
of the pattern

5

Chapter 2. The MDF command reference

offset type name description

0x04 unsigned 32-bit network
order

mask contains the general mask
of the pattern

0x08 unsigned 32-bit network
order

ubound contains the upper bound
of the pattern

0x0b unsigned 32-bit network
order

offset contains the (logical)
offset of the pattern

If you need futher information what the single fields do, please read the BadMEM Pattern Specification,
which you can download from http://badmem.sourceforge.net

Please note that the normal length of a V2-with-ubound structure is 16 bytes.

6

Chapter 3. A recommended MDF sequence
The following sequence of MDF commands is a recommended prototype:

• MDFCMD_VERSION

• first MDFCMD_MODULENAME

• first MDFCMD_MODULESIZE

• zero, one or more MDFCMD_PATTERN

• second MDFCMD_MODULENAME

• second MDFCMD_MODULESIZE

• zero, one or more MDFCMD_PATTERN

• repeat the last three steps for any module you want to define

• MDFCMD_END

7

	Table of Contents
	List of Tables
	Chapter 1. Introduction
	1.1. A MDF command
	1.2. A sequence of MDF commands

	Chapter 2. The MDF command reference
	2.1. MDFCMDVERSION - Version definition
	2.1.1. Description

	2.2. MDFCMDEND - End of protocol
	2.2.1. Description

	2.3. MDFCMDMODULENAME - Start of a new module
	2.3.1. Description

	2.4. MDFCMDMODULESIZE - Setting the size of a module
	2.4.1. Description

	2.5. MDFCMDPATTERN - Submission of a BadMEM pattern
	2.5.1. Description
	2.5.2. The V2-with-ubound pattern standard

	Chapter 3. A recommended MDF sequence

